Problem with a solution proposed by Arkady Alt , San Jose , California, USA
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Further we will prove, using Math. Induction. that for any » € N holds inequality
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1. Base of Math. Induction.

Forn = lwe have b, = 1 and % = 1.
2. Step of Math. Induction.

For any n > 1 from supposition bk2k22-};72—_p1—2 k < n follow:
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Remains to prove that 22(k+ 1)? — (k+ 1)? + k% > 2k + 1)”.
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Rk +2)! = 2k+ 1)? > (k+ 1)’ — k?, where latter inequality is right because function
h(x) = x+ 1) =x? = (x+ 1P+ (x + 1)72x +...+(x + 1)x2 + x»'obviously is
increasing in (0,0).

We can see that equality in inequality 5, > ”23—+2 occurs only if n is power of 2,

because otherwise, in chain of inequalities at least one time appears rigorous inequality.
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Thus, min — 7% — 27 — 1



